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ABSTRACT 

Examples are given of functions f(x) taking [0,1] into, or indeed onto, [0,1] 
in such a way that two dimensional measure of the set consisting of all points 
on all the straight line segments connecting (x, 0) to (f(x), 1) is zero. 

The following question was posed by Dr. Belna of Michigan State University. 

Is there a function f (  ) taking [0.1] into [0, 1] such that, if l(x) is the straight 

line segment connecting (x, 0) to ( f (x) ,  1) in the plane, and L is the point set sum 

of all the points on all the line segments, i.e. L = Uo <_x< 1 {(x, y):(x ,y)  ~ l(x)}, the 

two dimensional Lebesgue measure of L is zero, i.e., m2(L ) = 0 ? 

Two examples of such a function are given. Aspects of the problem are rem- 

iniscent of the Kakeya problem. The solution, however, is extremely simple 

and illustrates the connection of such problems to aspects of the Cantor set. 

To illustrate a necessary property of such a function f ( ) ,  we make the negative 

observation. 

If there exists a set A in [0, 1] of positive linear measure, such that the restriction 

o f f (  ) to A is monotone, then m2(L ) > O. 

It is sufficient to consider A closed and f ( x )  continuous on A. 

Let (Xo, Xl),(x2,x3),"',(Xzn, Xzn+l),"" be the intervals of the complement X 

with respect to [0, 1] of A. Let Ti be the trapezoid (or triangle if f(x2~) =f(x2i+ 1) 

with vertices (x2i,0), (x2i+1,0) (f(x2i),l) ,(f(x2i+l),0).  Then T = U T i contains 

the complement L in the square (0,0), (01), (1,1), (1,0). 

Since the T~ are disjoint, we have 

1 
m2(T) = Z mz(T~) = ~  ~: (x2~+1 - x2i) + (f(x2i+l) - f (x2 , ) )  

i>__o ~__>0 

1 [ 2  --  r e ( A )  - m ( . f ( A ) ) ]  = l [ rn (~)  + m(f(A)] =~- 
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Fig. 1. 
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where m(  ) is linear Lebesgue measure. 

So m2(L, ) < m2(T) < 1. Hence mz(L) > O. 

Likewise if a measurable set B with mz(B) > 0 exists for which f (x)  <f (y )  if 

x > y, for all pairs x, y in B. This may be seen by noting that g,(x) = rx + (1 - r)f(x) 

is monotone upward for r sufficiently close to 1 and applying the argument used 

above. Thus the f (x )  in the examples will be seen to reorder all sets of positive 

measure. 

EXAMVLE 1. We represent x ~ [0, 1] in its triadic expansion x =  ~ o  x~3 -i 

where x~ takes values 0, 1,2. We take fi(x) = 26(xi, 2) and vi(x ) = 26(xi, 1) where 

6(a, b)=  1 if a = b, 0 if a C b, and l e t f ( x ) =  ]~i~of/(x)3 -~ and v(x)= •i=o°° vi(x)3-~. 

We note that x = f ( x )  + v(x)/2. The x coordinates of the intersection of L with 

y = r will be the range, A,, of the function 

g,(x) = (1 - r ) x  + rf(x) = (1 - r)(f(x) + v(x)/2) +rf(x)  

= f (x)  + (1 - r) v(x)/2. 

The following figure illustrates the first two stages of the construction of L. Shaded 

areas are subsets of E. 

That m(Ar)= 0 for all r > 0 implies that mz(L ) = 0 follows from Fubini's 

theorem. 

We introduce the notation C ® r = { c r : c ~ C }  C O a = { c + a ;  c~C} and 

recall that for Lebesgue measure m( ) we have 

(1) m(C ® r) = rm(C), m(C ® a) = m(C). 

it is clear that the range of gr(x) restricted t o [ w ,  n + ~ . [  is of By construction 
k "  

~ J 

the form {A, ® @ d} for a suitable d. In particular, 

i 
y=r  
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Taken with (2), this yields m(A,)= O. 

A property of a subset of the cross product of the Cantor set is hereby shown 

to have a peculiar prismatic property. Let K = {(f, v)} consist of the points of 

the cross product of the Cantor set with itself with the restriction that fi and v~ are 

never simultaneously 2. The first two applications of this restriction are shown in 

the illustration below: 

D 
Z]½ 

[2 D 

Fig. 2. 

That x = f ( x )  + v(x)/2 states that projection of K in the direction - ½ fills the 

interval, but that the projection of K by all other slopes between - 1  and 0 are of 

measure zero is an interpretation of the example above. It happens that the only 

other directions where the projections fill an interval are - 2  and 1. 

EXAMPLE 2. We use a construction due to J. P. Kahane [2]. Let 

E1/2 = {x:x  = 3 ]~i~oXi4-',xi = 0,1}, the Cantor set on [0,1] obtained by 

leaving out middle halves. Let L = {(rx + (1 - r)y, r):x ~ E1/2, 0 <_ r <_ 1} so that 

L is the point set sum of all segments connecting (0, x) to (1, y) for x and y taken 

from E1/2. Using the notation of the previous example, gl/3(x) = Y.(x i + 2y~)4 - i  

and g2/3(x) = ]~(2xi + yi)4 -i, so that y = 1/3 and y = 2/3 cut L in sets containing'all 

points on [13,1]. Hence a segment in L connects each point of(x ,  1/3) to apoin t  

(z, 1/3) where z may be found by replacing 1 for 2 and 2 for 1 in the base 4 expansion 

of x. Hence, if m2(L) = 0, we have an example where each point of one segment 

is connected to some point of a parallel segment, in a one to one way with the 

area of the point set sum of the connected segments being zero. 

We now prove that mz(L ) = 0. ',Since x~E1/2 implies that x/4EE1/2 and 

(x + 3)/4~E1/2, we have L =U~'=x Li where L i = TiL; the T~ being the affine 

transformations with y '=y ,  all i, and x'i = x/4, x~ = (x + 3)/4, x~ = (x + 3y)/4, 

x~, = (x - 3 + 3y)/4. 
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2 r = y  

_1 r -~ -  
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Fig. 3. 
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We note that m2 (T/A) = 1/4 m 2 (A). We denote by e A the complement of A with 

respect to the unit square. We observe 

4 4 

mz(¢L) = ~, m2(TieL) - Z mz(T/eL n TjcL) + Y~ rnz(Si) 
i = l  i¢:j  i = l  

wbere the intersections, and the triangles S i are as indicated in Figure 3. 

Since the sum of the areas of the intersections of the transforms of the unit 

square is the same as that of  the areas of  the S ,  it follows that the measure of  the 

intersection of L with shaded regions is zero. By the Fubini theorem then, the 

Fig. 4. 
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intersection of y = r with L in the shaded area is of linear measure zero for 

almost  all r. The procedure used in the previous example ~ill  then show that 

m ( L  n (y = r)) = 0 for all but the exceptional r, and hence, by another application 

of the Fubini theorem, mz (L )  = O. 

As before, this shows a prismatic property of K = E1/z × E~/z. 

The projection of K in the direction with slopes 1/2, 2 , -  1 / 2 , -  2 fills an interval 

and almost all, (in fact the exceptional directions have slopes _+ 2 • 4 k with K a 

positive or negative integer) other directions the projections are of measure zero. 

This property was shown for a dense setof projections by Herzog and Piranian [1]. 

The proofs of a probabilist form used in [3] could have been used here, but a 

more arithmetic approach arizing from conversations with F. Herzog seemed 

more appropriate. 
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